GAZI UNIVERSITY INFORMATION PACKAGE - 2019 ACADEMIC YEAR

COURSE DESCRIPTION
MATHEMATICS-I/MAT-101
Course Title: MATHEMATICS-I
Credits 4 ECTS 6
Course Semester 1 Type of The Course Compulsory
COURSE INFORMATION
 -- (CATALOG CONTENT)
 -- (TEXTBOOK)
 -- (SUPPLEMENTARY TEXTBOOK)
 -- (PREREQUISITES AND CO-REQUISITES)
 -- LANGUAGE OF INSTRUCTION
  Turkish
 -- COURSE OBJECTIVES
 -- COURSE LEARNING OUTCOMES
Students can know definiton of functions and some special functions.
Students can calculate limit of function and some special trigonometric limits.
Students can take the derivative of function.
Students can solve problems of absolute and local extremums, maxima and minima.
Students can take defined and indefinite integrals of the some special functions.

 -- MODE OF DELIVERY
  The mode of delivery of this course is Face to face
 --WEEKLY SCHEDULE
1. Week  Introduction: Sets, Real numbers, intervals, inequalities, neighbourhoods, coordinates
2. Week  Functions: Definition function, definition and image of sets, injections, surjections and inverse functions, combinations of functions.
3. Week  Special Functions: Definitions of rational, irrational, trigonometric, inverse trigonometric, exponenetial, logarithmic and hyperbolic functions.
4. Week  Limit of Function: Definition of limit, right and left-hand limit, fundamental theorems about limits, some special and trigonometric limits.
5. Week  Continuity of Functions: Definition of continuity, fundamental properties of continuous funcitons, discontinuties and its types
6. Week  Concept of derivative: Definition and presence, rules of derivative, derivative of composite, inverse,and trigonometric functions.
7. Week  Differentiation of exponenetial, logarithmic, hyperbolic and inverse hyperbolic functions, closed and parametric functions, higher order derivatives.
8. Week  Application of Differentiation: Geometrical interpretation of differentiaition, absolute and local extremums, maxima and minima problems.
9. Week  Physical interpretation of differentiaition, concavity Rolle’s theorem and mean value theorems. Elimination of uncertainties by using l`Hospital rule, midterm
10. Week  Graphic Drawing: Graphs of rational, irrational, exponenetial, logarithmic, trigonometric, hyperbolic and parametric functions.
11. Week  The Definition of Riemann Integrals and their properties
12. Week  Indefinite Integral : Differentiation of a function, definition of indefinite integral, propereties, basic integration formulas.
13. Week  Methods of Computing Integral : Integration by substitution, parts.
14. Week  Integral of Partial fractions, trigonometric and hyperbolic functions, integration by some special substitution.
15. Week  
16. Week  
 -- TEACHING and LEARNING METHODS
 -- ASSESSMENT CRITERIA
 
Quantity
Total Weighting (%)
 Midterm Exams
1
60
 Assignment
0
0
 Application
0
0
 Projects
0
0
 Practice
0
0
 Quiz
0
0
 Percent of In-term Studies  
60
 Percentage of Final Exam to Total Score  
40
 -- WORKLOAD
 Activity  Total Number of Weeks  Duration (weekly hour)  Total Period Work Load
 Weekly Theoretical Course Hours
14
4
56
 Weekly Tutorial Hours
0
0
0
 Reading Tasks
11
4
44
 Searching in Internet and Library
11
2
22
 Material Design and Implementation
0
 Report Preparing
0
0
0
 Preparing a Presentation
0
 Presentation
0
 Midterm Exam and Preperation for Midterm Exam
1
12
12
 Final Exam and Preperation for Final Exam
1
24
24
 Other (should be emphasized)
0
 TOTAL WORKLOAD: 
158
 TOTAL WORKLOAD / 25: 
6.32
 Course Credit (ECTS): 
6
 -- COURSE'S CONTRIBUTION TO PROGRAM
NO
PROGRAM LEARNING OUTCOMES
1
2
3
4
5
1Gaining the necessary theoretical and applied knowledge on engineering, mathematics, and science, skills for determining, defining and formulating computer engineering problems.X
2Gaining the ability to choose and apply appropriate analysis, modeling and design methods in computer engineering problems.X
3Gaining the ability to design a system, process or product related to computer engineering for a specific given purpose, gaining the ability to apply modern design tools.X
4Gaining the ability to evaluate the issues of security, robustness, adaptability, economy, ecological problems and sustainability in engineering solutions under realistic constraints and conditions.X
5Gaining the ability of simulation, experimenting, design, interpreting results for analysis and solution of computer engineering problems. Gaining the ability of analyzing of data for real problems which are need of industry.X
6Gaining the ability to use contemporary techniques and tools, information technologies for engineering applications.X
7Gaining the ability to work efficiently as individual or in a group in computer engineering discipline or in interdisciplinary studies. Gaining the ability to act independently, to use initiative when needed, and to be creative.X
8Gaining the ability to communicate efficiently by expressing his/her opinions in Turkish verbally or in written form in a concise manner. Gaining ability to efficiently use at least a foreign language in his/her proficiency.X
9Gaining the ability to grasp the significance of the concepts in areas such as business entrepreneurship, innovation and gaining ability for planning and management of a project.X
10Gaining the ability of awareness about self-renewal concept by comprehending the necessity of lifelong learning.X
11Gaining the ability to have professional and ethical responsibility.X
12The development of personality such as self-confidence, undaunting in the face of difficulties, consistency and patience.X
13Awareness about problems concerning with social, economic, environmental, etc. in our age and realization of the engineering profession by keeping mind in the responsibility which is related the awareness.X
 -- NAME OF LECTURER(S)
   (Mathematics Department Teaching Members)
 -- WEB SITE(S) OF LECTURER(S)
   (-)
 -- EMAIL(S) OF LECTURER(S)
   (fefmatematik@gazi.edu.tr)