# GAZI UNIVERSITY INFORMATION PACKAGE - 2019 ACADEMIC YEAR

COURSE DESCRIPTION
NUMERICAL ANALYSIS/MAT-202
 Course Title: NUMERICAL ANALYSIS Credits 3 ECTS 4 Course Semester 4 Type of The Course Compulsory
COURSE INFORMATION
-- (CATALOG CONTENT)
-- (TEXTBOOK)
-- (SUPPLEMENTARY TEXTBOOK)
-- (PREREQUISITES AND CO-REQUISITES)
-- LANGUAGE OF INSTRUCTION
NUMERICAL ANALY
-- COURSE OBJECTIVES
-- COURSE LEARNING OUTCOMES
Recognize, classify and formulize numerical methods Understand the main error concepts at the input and output and can relate them.
Kullandığı nümerik yöntemlerin sonuçlarını doğru bir şekilde yorumlayabilir.
Karşılaştığı nümerik problemler için hangi algoritmayı kullanacağına karar verebilir. Kullandığı algoritmanın avantaj ve dezavantajlarını bilir, algoritmanın nasıl çalışacağı konusunda gerçekçi bir tahmini olur.

-- MODE OF DELIVERY
Face to face, Application
 --WEEKLY SCHEDULE 1. Week Systems of numbers and errors 2. Week Computer representations of numbers, integers and floating-point numbers (IEEE notations) Errors due to these impressions. 3. Week Numerical solution methods of nonlinear equations, Bisection Method 4. Week Regula Falsi Method, Newton Raphson Method 5. Week Fixed Point Iteration, Secant Method 6. Week Solution of Linear Equations Systems, Cramer Rule, Gauss Elimination Method 7. Week Jacobi Iteration, Gauss-Seidel Method 8. Week Ara Sınav, Lagrange İnterpolasyonu 9. Week Newton Interpolation 10. Week Curve Fitting, Least Squares Method 11. Week Numerical differentiation methods Richardson Extrapolation 12. Week Numerical integral methods, The Trapezoidal Methods, Romberg Method 13. Week Simpson and Gauss Formulas 14. Week Initial Value Problems, Euler Methods, Runge-Kutta Methods 15. Week 16. Week
-- TEACHING and LEARNING METHODS
-- ASSESSMENT CRITERIA
 Quantity Total Weighting (%) Midterm Exams 1 50 Assignment 1 10 Application 0 0 Projects 0 0 Practice 0 0 Quiz 0 0 Percent of In-term Studies 60 Percentage of Final Exam to Total Score 40