GAZI UNIVERSITY INFORMATION PACKAGE - 2019 ACADEMIC YEAR

COURSE DESCRIPTION
NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS/MAT- 330
Course Title: NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS
Credits 3 ECTS 5
Semester 6 Compulsory/Elective Elective
COURSE INFO
 -- LANGUAGE OF INSTRUCTION
  Turkish
 -- NAME OF LECTURER(S)
  Assoc.Prof.Dr. Fatma AYAZ
 -- WEB SITE(S) OF LECTURER(S)
  gazi.edu.tr
 -- EMAIL(S) OF LECTURER(S)
  http://websitem.gazi.edu.tr/site/fayaz
 -- LEARNING OUTCOMES OF THE COURSE UNIT
At the end of this course, numerical solution methods for ordinary differential equations will be learned
The knowledge, wich are gained in the course, helps students to broaden their horizon
Content of the lecture is associated with the other areas of mathematics such as algebra, analysis etc.
Students have gained knowledge about computer programming and preparing algorithms
To prepare the sudents for post graduate studies




 -- MODE OF DELIVERY
  The mode of delivery of this course is Face to face
 -- PREREQUISITES AND CO-REQUISITES
  There is no prerequisite or co-requisite for this course.
 -- RECOMMENDED OPTIONAL PROGRAMME COMPONENTS
  Ordinary Differential Equations
 --COURSE CONTENT
1. Week  Errors and Computer arithmetic
2. Week  Euler and Modified Euler Methods
3. Week  Runge Kutta Methods ve Obtaining Formulas
4. Week  Runge Kutta Methods Obtaining Formulas
5. Week  Multistep Methods
6. Week  Milne’s Method
7. Week  Adams-Moulton Method
8. Week  Mid-Term Exam
9. Week  Convergence Criteria
10. Week  Approximate solutions of higher differential equations
11. Week  Approximate solutions of the systems of differential equations
12. Week  Comparisons of methods for differential equations and computer applications
13. Week  Initial Value Problems
14. Week  Boundary Value problems:Finite Difference
15. Week  Boundary Value problems:Finite Elements
16. Week  Final Exam
 -- RECOMMENDED OR REQUIRED READING
  1)Applied Numerical Analysis; Curtis, F Gerald, Patrick O. Wheatley; Addison-Wesley Publishing, 2)Nümerik Analiz, Doç. Dr. Ömer Akın, Ankara Üniv 1)Applied Numerical Analysis; Curtis, F Gerald, Patrick O. Wheatley; Addison-Wesley Publishing, 2)Nümerik Analiz, Doç. Dr. Ömer Akın, Ankara Üniv.
 -- PLANNED LEARNING ACTIVITIES AND TEACHING METHODS
  Lecture, Question & Answer, Demonstration, Drill - Practise
 -- WORK PLACEMENT(S)
  None
 -- ASSESSMENT METHODS AND CRITERIA
 
Quantity
Percentage
 Mid-terms
1
30
 Assignment
1
10
 Exercises
0
0
 Projects
0
0
 Practice
0
0
 Quiz
0
0
 Contribution of In-term Studies to Overall Grade  
40
 Contribution of Final Examination to Overall Grade  
60
 -- WORKLOAD
 Efficiency  Total Week Count  Weekly Duration (in hour)  Total Workload in Semester
 Theoretical Study Hours of Course Per Week
14
3
42
 Practising Hours of Course Per Week
0
 Reading
4
7
28
 Searching in Internet and Library
5
7
35
 Designing and Applying Materials
0
 Preparing Reports
0
 Preparing Presentation
0
 Presentation
0
 Mid-Term and Studying for Mid-Term
1
10
10
 Final and Studying for Final
1
10
10
 Other
0
 TOTAL WORKLOAD: 
125
 TOTAL WORKLOAD / 25: 
5
 ECTS: 
5
 -- COURSE'S CONTRIBUTION TO PROGRAM
NO
PROGRAM LEARNING OUTCOMES
1
2
3
4
5
1To train individuals who are contemporary, entrepreneur and have unique and aesthetic values, self-confidence and capable of independent decision-making.X
2To give good education in the program fields as algebra, geometry, applied mathematics, topology and analysis in order to be equipped with enough mathematics.X
3To teach mathematical thinking methods in order to improve the ability to express mathematics both orally and in writing.X
4To train individuals who are knowledgeable about the history of mathematics and the production of scientific knowledge and can follow developments in these disciplines.X
5To provide necessary equipments to take positions such areas as banking, finance, econometrics, and actuarial.X
6To acquire ability to solve problems encountered in real life by means of mathematical modeling using mathematical methods.X
7To provide ability to do necessary resource researches in the areas of mathematics and to use accessed information.X
8To give appropriate training in such areas as in computer programming and creating algorithms in order to take parts in developing IT sector.X
9To gain substructure to be able to study at graduate level.X
10To enable the student to gain the ability of relating mathematics with the other sciences.X